

K25P 2017

Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S. – Supplementary) Examination, April 2025 (2021 and 2022 Admissions) MATHEMATICS MAT 2C 07 : Measure and Integration

Time : 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Prove that $m^*([x]) = 0$ for any $x \in R$.
- 2. Prove that every Borel set is measurable.
- Prove that if f and g are measurable. | f | ≤ | g |a.e., and g is integrable, then f is integrable.
- 4. Prove that the intersection of hereditary σ -rings is again a σ -ring.
- 5. Let f = g a.e. (μ), where μ is a complete measure. Show that if f is measurable, so is g.
- 6. If $\rho(f, g) = \|f g\|_p$, then prove that, for $p \ge 1$, ρ is a metric on $L^p(\mu)$.

PART – B

Answer **any four** questions from this part without omitting **any Unit**. **Each** question carries **16** marks.

(4×16=64)

Unit +IVE

- 7. a) Let M be the class of Lebesgue measurable sets. Prove that M is a σ -algebra.
 - b) Prove that Lebesgue outer measure is countably additive on disjoint measurable sets.
- 8. Prove that the following statements regarding the set E are equivalent
 - a) E is measurable
 - b) $\forall \epsilon > 0$, there exists O, an open set, O $\supseteq E$ such that $m^*(O E) \le \epsilon$
 - c) there exists G, a G_{δ} -set, G \supseteq E such that $m^*(G E) = 0$
 - d) $\forall \in > 0$, there exists F, a closed set, $F \subseteq E$ such that $m^*(E F) \leq \in$
 - e) there exists F, a F_{α} -set, $F \subseteq E$ such that $m^*(E F) = 0$.

K25P 2017

- 9. a) Show that there exists uncountable sets of zero measure.
 - b) Prove that there exists a non-measurable set.

Unit – II

- 10. Define integrable functions. Let f and g be integrable functions. Then prove the following.
 - a) af is integrable and $\int afdx = a \int fdx$
 - b) f + g is integrable and $\int (f + g)dx = \int fdx + \int gdx$
 - c) If f = 0 a.e., then $\int f dx = 0$
 - d) If $f \le g$ a.e., then $\int f dx \le \int g dx$
 - e) If A and B are disjoint measurable sets, then $\int_A fdx + \int_B fdx = \int_{A \cup B} fdx$.
- 11. a) State and prove Lebesgue's Dominated Convergence Theorem.
 - b) Show that $\lim_{\beta\to\infty}\int_a^b f(x)\sin\beta x dx = 0$.
- 12. a) The outer measure μ^* on H(R) defined by μ on R and the corresponding outer measure defined by $\overline{\mu}$ on S(R) and $\overline{\mu}$ on S^{*} are the same.
 - b) If μ is a σ -finite measure on a ring R, then prove that it has a unique extension to the σ -ring S(R). Unit - III

- 13. a) Let $0 and <math>f \ge 0$, $g \ge 0$, $f, g \in L^{p}(\mu)$. Show that $\|f + g\|_{p} \ge \|f\|_{p} + \|g\|_{p}$.
 - b) Let $\{f_n\}$ is a sequence in $L^{\infty}(\mu)$ such that $\|f_n f_m\| \infty \to 0$ as n, $m \to \infty$, then prove that there exist a function f such that $\lim_{n \to \infty} f \in L^{\infty}(\mu)$ and $\lim \|\mathbf{f}_n - \mathbf{f}\| \infty = \mathbf{0}.$
- 14. Let $p \ge 1$ and $f, g \in L^p(\mu)$, then prove that $\left(\int |f + g|^p d\mu\right)^{\frac{1}{p}} \le \left(\int |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int |g|^p d\mu\right)^{\frac{1}{p}}$. When does the equality occur? Justify your answer.
- 15. State and prove Holder's inequality. When does the equality occur ? Justify.